If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+10p+2=p^2
We move all terms to the left:
6p^2+10p+2-(p^2)=0
determiningTheFunctionDomain 6p^2-p^2+10p+2=0
We add all the numbers together, and all the variables
5p^2+10p+2=0
a = 5; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·5·2
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{15}}{2*5}=\frac{-10-2\sqrt{15}}{10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{15}}{2*5}=\frac{-10+2\sqrt{15}}{10} $
| 11=t6 | | (5x+1)+(8x+10)=180 | | (X/6)+(3x/5)=2 | | (5x+1)=(8x+10) | | 3w+2=2w+6 | | 8x+25+6x+15=180 | | 4x+6/5=2x/3 | | 5x-+11=42 | | 4(d–4)+2=3(d+1) | | (6x+15)+(7x-6)=180 | | 8x+25=6x+15 | | –15y+9y−–9y=–18 | | -195=5(1+5m) | | F(x)=3(-4)+7 | | 2x+10=+29 | | (6x+15)=(7x-6) | | 2f+6=3f+23 | | -1/2x=3/4x+4=16 | | -1/2x=3/4x+4 | | 4y-3y+13=24 | | (5x+16)+(7x+4)=180 | | a/a=15/2 | | 3h+21=10h | | n+3n=12-8n | | 13y-17=1 | | 5x-48=-23 | | 6x-7-4x=19-4 | | (x+58)(4x-11)=180 | | 5a+8=5a | | 5x-48=-2 | | 7p/3-2=3p-9 | | (8x+12)+140=180 |